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Introduction

In this lecture, we take a closer look at transformations and
regression diagnostics in the context of bivariate regression. We
examine various theoretical approaches to data-driven
transformation.

In the last lecture, we took a brief look at techniques for fitting
a simple linear regression and examining residuals.

We saw that examining a residual plot can help us see
departures from the strict linear regression model, which
assumes that errors are independent, normally distributed, and
show a constant conditional variance σ2

ε .
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Introduction

We also saw that the residual standard deviation is, in a sense,
a more stable indicator of the ability of a linear model of y to
predict y accurately than is the more traditional model R2 if
the model is strictly linear, because if the model is strictly
linear over the entire range of x values, then it will be linear for
any subrange of x values.

So there are some excellent reasons to want to nonlinearly
transform data if there is substantial nonlinearity in the x–y
scatterplot.

However, there are also reasons to linearly transform data as
well.
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Introduction

We shall briefly describe various approaches and rationales for
linear and nonlinear transformation.
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Linear Transformations

Linear transformations of variables do not affect the accuracy of
prediction in linear regression. Any change in the x or y
variables will be compensated for in corresponding changes in
the β values.

However, various linear transforms can still be important for at
least 3 reasons:

Avoiding nonsensical values
Increasing comparability
Reducing collinearity of predictors
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Avoiding Nonsensical Values by Centering

Technically, in the simple linear regression equation, the
y-intercept coefficient b0 is the value of y when x = 0.

In many cases, x = 0 does not correspond well to physical
reality, as when, for example x is a person’s height and y their
weight. In such cases, it makes sense to at least center the
variable x , i.e., convert it to deviation score form by subtracting
its mean.

After centering the heights, a value x = 0 corresponds to an
average height, and so the y-intercept would be interpreted as
the average weight of people who are of average height.
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Enhancing Comparability by Z -Score Standardization

After centering variables, they can be standardized by dividing
by their standard deviation, thus converting them to z -score
form.

When variables are in this form, their means are always 0 and
their standard deviations are always 1, so differences are always
on the same scale.

Multilevel Diagnostics and Transformations – Part 2



Introduction
Linear Transformations
Polynomial Regression

Orthogonal Polynomials
Empirically Motivated Nonlinear Transformations

Standardizing to a Convenient Metric

Sometimes, convenience is an overriding concern, and rather
then standardizing to z -score form, you choose a metric like
income in tens of thousands of dollars that allows easy
intrepretability.
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Standardizing to a Standard Deviation of 1/2

In section 4.2, Gelman & Hill recommend standardizing
numeric (not binary) “input variables” to a mean of zero and a
standard deviation of 1/2, by centering, then dividing by 2
standard deviations.

They state that doing this “maintains coherence when
considering binary input variables.” (Binary variables coded 0,1
have a standard deviation of 1/2 when p = 0.5. Changing from
0 to 1 implies a shift of 2 standard deviations, which in turn
results in the β weight being reduced by a factor of 2.)

Gelman & Hill explain the rationale very briefly, and this
rationale is conveyed in more clarity and detail in Gelman’s
(2008) article in Statistics in Medicine.
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Standardizing to a Standard Deviation of 1/2

Recall that a β conveys how much y should will increase on
average for a unit increase in x . If numeric input variables are
standardized, a unit increase in x corresponds to a standard
deviation. However, if binary variables are coded 0,1 a unit
increase from 0 to 1 corresponds to two standard deviations.
Gelman & Hill see this as cause for concern, as linear regression
compensates for this by decreasing the β weights on binary
variables. By decreasing the standard deviation of numeric
input variables to 1/2, they seek to eliminate what they see as
an inherent interpretational disadvantage for binary variables.
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Standardizing to a Standard Deviation of 1/2

Comment. I don’t (yet!) see this argument as particularly
convincing, because the standard deviation itself has meaning
only in connection with a meaningful scale, which binary
variables don’t have.

Ultimately, a conviction to understand what numerical values
actually mean in any data analytic context should trump
attempts to automatize this process.
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Standardizing to Eliminate Problems in Interpreting
Interactions

When one of the variables is binary, and interaction effects exist,
centering can substantially aid the interpretation of coefficients,
because such interpretations rely on a meaningful zero point.

For example, if the model with coefficients is

y = 14 + 34x1 + 12x2 + 14x1x2

the coefficient 34 is the amount of gain in y for unit change in x
only when x2 = 0.
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Polynomial Regression

Gelman & Hill distinguish in their terminology between input
variables and predictors. A quick example:

Example (Input Variables vs. Predictors)

Consider a single y predicted from a single x . We might write

y = β1x + β0 + ε

Alternatively, we might write

y = β1x + β2x 2 + β0 + ε

In each case, the input variable is x . In the first case, there is
also only one predictor, x , while in the second case, there are
two predictors, x and x 2. In one sense, the second regression is
nonlinear, because y is predicted from a nonlinear function of
the input variable x . In another sense, it is linear, because y is
predicted from a linear function of the predictors x and x 2.
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Polynomial Regression

In polynomial regression, we fit a polynomial in x of degree q to
a criterion variable y .

Example (Degree 3 Polynomial)

For example, a polynomial regression of degree 3 would fit the
model

y = b0 + b1x + b2x 2 + b3x 3 + ε
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Polynomial Regression

Practical Limitations
If we use polynomial regression, we need to limit the order
of the polynomial
Perfect fit to N data points can always be achieved with a
degree N − 1 polynomial
Fit always improves as we add more terms
Terms are not uncorrelated, which adds to interpretation
problems, although centering generally will reduce the
correlation between polynomial terms
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Polynomial Regression

Brett Larget at Wisconsin has a nice writeup on polynomial
regression. Following his example, let’s create some artificial
polynomial data.
> set .seed (12345)
> x ← rnorm(20, mean = 0, sd = 1)
> y ← 1 + 2 * x + 3 * x^2 + rnorm(20, sd = 0.5)

> plot (x, y)
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Polynomial Regression

Let’s fit a sequence of polynomial models to these data. Note
the use of the I operator. In R’s model interpretation language,
x*x has a special meaning, so you need to use this operator to
convey to R that you intend an expression to be interpreted as
a numerical transformation.
> x ← x - mean(x)
> fit0 ← lm(y ˜ 1)
> fit1 ← lm(y ˜ x)
> fit2 ← lm(y ˜ x + I(x^2))
> fit3 ← lm(y ˜ x + I(x^2) + I(x^3))
> fit4 ← lm(y ˜ x + I(x^2) + I(x^3) + I(x^4))
> fit5 ← lm(y ˜ x + I(x^2) + I(x^3) + I(x^4) + I(x^5))
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Polynomial Regression

Let’s examine the fit of these regression lines graphically:
> ## start by plotting the data

> plot (x,y)
> ## add the line of linear fit in red

> curve(cbind(1,x) %*% coef (fit1), col = ' red ' ,add=TRUE)
> ## and quadratic fit in black

> curve(cbind(1,x,x^2) %*% coef (fit2),add=TRUE)
> ## and cubic fit in blue

> curve(cbind(1,x,x^2,x^3) %*% coef (fit3), col = ' blue ' ,add=TRUE)
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Polynomial Regression

It seems the cubic term adds little of consequence to the quality
of fit. Check the fit with the anova function:
> anova(fit0 ,fit1 ,fit2 ,fit3 ,fit4 ,fit5)

Analysis of Variance Table

Model 1: y ~ 1
Model 2: y ~ x
Model 3: y ~ x + I(x^2)
Model 4: y ~ x + I(x^2) + I(x^3)
Model 5: y ~ x + I(x^2) + I(x^3) + I(x^4)
Model 6: y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 260.978
2 18 195.319 1 65.659 207.0416 8.812e-10 ***
3 17 4.760 1 190.559 600.8825 6.712e-13 ***
4 16 4.464 1 0.295 0.9316 0.3508
5 15 4.440 1 0.024 0.0772 0.7853
6 14 4.440 1 9.414e-05 0.0003 0.9865
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Orthogonal Polynomials

In situations where x is a set of equally spaced ordered
categories, you can fit orthogonal polynomials, a set of fixed
values. You can read about this in detail in CCAW. This
technique breaks the linear, quadratic, cubic, etc. sources of
variation into orthogonal components.

Multilevel Diagnostics and Transformations – Part 2



Introduction
Linear Transformations
Polynomial Regression

Orthogonal Polynomials
Empirically Motivated Nonlinear Transformations

Mosteller-Tukey Bulging Rule
Box-Cox Transformations

Straightening a Plot

Often, a nonlinear transformation of x and/or y will work
wonders in improving the fit of a linear model. Mosteller and
Tukey, in their classic 1977 book Data Analysis and Regression,
list two primary advantages in linearizing a plot.

Interpolation and interpretation are relatively easier
Interpreting departures from good fit is easier
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Mosteller-Tukey Bulging Rule
Box-Cox Transformations

A Caution

Mosteller and Tukey quickly add a serious caution: When a
nonlinear transformation is performed strictly on an empirical
basis, extrapolation beyond the range of the data is extremely
dangerous. On the other hand, if guided by strong theory, such
extrapolation might be reasonable.
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Mosteller-Tukey Bulging Rule
Box-Cox Transformations

The Ladder of Re-Expression

Mosteller and Tukey speak of a “ladder of re-expressions”
involving transformations of the form

z = tp (1)

for positive values of t , and for powers p on the ladder of values
−3,−2,−1,−1/2,#, 1/2, 1, 2, 3, with # referring to a log
transformation. On page 84, they present a graphical
representation of their “bulging rule.”
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The Ladder of Re-Expression

Bruce Cooil of Vanderbilt’s Owen School has a nice Powerpoint
slide translation of the figure given by Mosteller and Tukey
(1977, p. 84).
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The Mosteller-Tukey Bulging Rule
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Using the Bulging Rule

Let’s create and plot some more artificial data:
> set .seed (12345)
> x ← rnorm(150,1,1)
> e ← rnorm(150,0,2)
> y ← .6 *x^3 + 13 + e
> fit.linear ← lm(y˜x)
> plot (x,y)
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Using the Bulging Rule

Here is the residual plot. Although it is hard to gauge, it does
not appear that residual variance changes overwhelmingly from
left to right, and so transformation of x alone may be sufficient.
> plot (x, res iduals (fit.linear ))
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Using the Bulging Rule

As you can see, the graph bulges in the direction that indicates
x should move up the re-expression ladder. First, let’s re-express
x so that it it is strictly positive. The minimum value of x is
> min(x)

[1] -1.380358
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Using the Bulging Rule

Hence x + 2 will be strictly positive. Plotting y against
(x + 2)2, we still see a slight rightward bulge.
> x.new ← (x + 2)^2
> plot (x.new ,y)
> fit.2 ← lm(y˜x.new)
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Using the Bulging Rule

Moving further up the ladder, we try plotting y against
(x + 2)3. This looks very close to perfectly linear.
> x.new ← (x + 2)^3
> plot (x.new ,y)
> fit.3 ← lm(y˜x.new)
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Using the Bulging Rule

Residuals look good as well.
> plot (x.new , res iduals (fit.3))
> abline (0,0,lty=2, col = ' red ' )
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Using the Bulging Rule

Examining the fit statistics, we first look at the power of 2 fit:
> summary(fit.2)

Call:
lm(formula = y ~ x.new)

Residuals:
Min 1Q Median 3Q Max

-6.5140 -1.9943 -0.4320 1.9019 12.3219

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.54601 0.44176 19.34 <2e-16 ***
x.new 0.71091 0.03315 21.45 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.914 on 148 degrees of freedom
Multiple R-squared: 0.7566, Adjusted R-squared: 0.7549
F-statistic: 460 on 1 and 148 DF, p-value: < 2.2e-16
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Using the Bulging Rule

Next, we look at the power of 3 fit. It is substantially better.
> summary(fit.3)

Call:
lm(formula = y ~ x.new)

Residuals:
Min 1Q Median 3Q Max

-5.7268 -1.4583 -0.1245 1.6715 8.0502

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.535446 0.285576 36.89 <2e-16 ***
x.new 0.138311 0.004901 28.22 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.338 on 148 degrees of freedom
Multiple R-squared: 0.8433, Adjusted R-squared: 0.8422
F-statistic: 796.3 on 1 and 148 DF, p-value: < 2.2e-16
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The Box-Cox Transformation Family

Box and Cox (1964) present a class of transformations of y
designed to stabilize residual variances and linearize fit. Such a
transformation of y can work well when the raw data show
heterogeneity of error variance.
The Box-Cox family is defined in terms of a parameter λ.

y(λ) =

{
(yλ − 1)/λ λ 6= 0
log y λ = 0

(2)

Non-positive values of y should be avoided. Often y will be
displaced by an amount α to avoid this problem.
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The Box-Cox Transformation Family

Let’s create and plot some slightly different artificial data:
> set .seed (12345)
> x ← rnorm(500,1,1)
> e ← rnorm(500,0,2)
> y ← (.6 *x + 13 + e)^3
> fit.linear ← lm(y˜x)
> plot (x,y)
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Fitting a Box-Cox Transformation

There are automated procedures available in the R library MASS
for selecting a Box-Cox transformation. We proceed by first
choosing a “reasonable” value of α (in this case, α = 0) and
finding the value of λ that maximizes the profile likelihood
function. The plot shows the maximum of the function, and
also indicates a 95% confidence interval for λ. Notice that the
confidence interval ranges from about .15 to .42, but the profile
likelihood is maximized with an approximate value of λ = 0.28.
> boxcox(y˜x,lambda=seq(-.5 ,.5,.01))
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Fitting a Box-Cox Transformation

The plot looks like this:
> trans ← function(y,lambda ){(y^lambda - 1)/lambda}
> y.trans ← trans(y,.28)
> box.cox.fit ← lm(y.trans ˜ x)
> plot (x,y.trans)
> abline (box.cox.fit ,lty=2, col = ' red ' )

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

−1 0 1 2 3

20
25

30
35

40

x

y.
tr

an
s

Multilevel Diagnostics and Transformations – Part 2



Introduction
Linear Transformations
Polynomial Regression

Orthogonal Polynomials
Empirically Motivated Nonlinear Transformations

Mosteller-Tukey Bulging Rule
Box-Cox Transformations

Fitting a Box-Cox Transformation

Here is the residual plot.
> plot (x, res iduals (box.cox.fit ))
> abline (0,0,lty=2, col = ' red ' )
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